Pythagoras

Dec 6, 2020 | More About Numerology

The other two philosophers who were to influence Pythagoras, and to introduce him to mathematical ideas, were Thales, and his pupil Anaximander who both lived on Miletus.
It is said that Pythagoras visited Thales in Miletus when he was between 18 and 20 years old. By this time Thales was an old man and, although he created a strong impression on Pythagoras, he probably did not teach him a great deal. However he did contribute to Pythagoras’s interest in mathematics and astronomy, and advised him to travel to Egypt to learn more of these subjects.
Thales’s pupil, Anaximander, lectured on Miletus and Pythagoras attended these lectures. Anaximander certainly was interested in geometry and cosmology and many of his ideas would influence Pythagoras’s own views.
In about 535 BC Pythagoras went to Egypt. This happened a few years after the tyrant Polycrates seized control of the city of Samos. There is some evidence to suggest that Pythagoras and Polycrates were friendly at first and it is claimed that Pythagoras went to Egypt with a letter of introduction written by Polycrates. In fact Polycrates had an alliance with Egypt and there were therefore strong links between Samos and Egypt at this time.
The accounts of Pythagoras’s time in Egypt suggest that he visited many of the temples and took part in many discussions with the priests. According to Porphyry Pythagoras was refused admission to all the temples except the one at Diospolis where he was accepted into the priesthood after completing the rites necessary for admission.
It is not difficult to relate many of Pythagoras’s beliefs, ones he would later impose on the society that he set up in Italy, to the customs that he came across in Egypt. For example the secrecy of the Egyptian priests, their refusal to eat beans, their refusal to wear even cloths made from animal skins, and their striving for purity were all customs that Pythagoras would later adopt.
In about 520 BC Pythagoras left Babylon and returned to Samos. Polycrates had been killed in about 522 BC and Cambyses died in the summer of 522 BC, either by committing suicide or as the result of an accident. The deaths of these rulers may have been a factor in Pythagoras’s return to Samos but it is nowhere explained how Pythagoras obtained his freedom.
Darius of Persia had taken control of Samos after Polycrates’ death and he would have controlled the island on Pythagoras’s return. This conflicts with the accounts of Porphyry and Diogenes Laertius who state that Polycrates was still in control of Samos when Pythagoras returned there.
Pythagoras made a journey to Crete shortly after his return to Samos to study the system of laws there. Back in Samos he founded a school which was called the semicircle. Porphyry in and says that Pythagoras learnt geometry from the Egyptians but it is likely that he was already acquainted with geometry, certainly after teachings from Thales and Anaximander.
In 525 BC Cambyses II, the king of Persia, invaded Egypt. Polycrates abandoned his alliance with Egypt and sent 40 ships to join the Persian fleet against the Egyptians. After Cambyses had won the Battle of Pelusium in the Nile Delta and had captured Heliopolis and Memphis, Egyptian resistance collapsed. Pythagoras was taken prisoner and taken to Babylon.
He settled in Crotona, a Greek colony in southern Italy, about 530 BC.
Pythagoras founded a philosophical and religious school in Croton (now Crotone, on the east of the heal of southern Italy) that had many followers. Pythagoras was the head of the society with an inner circle of followers known as mathematikoi. The mathematikoi lived permanently with the Society, had no personal possessions and were vegetarians. They were taught by Pythagoras himself and obeyed strict rules.

The man who played a crucial role in formulating principles that influenced Plato and Aristotle was the Greek philosopher and mathematician Pythagoras (about 580 BC – 500 BC).
Pythagoras is often described as the first pure mathematician. He is an extremely important figure in the development of mathematics yet we know relatively little about his mathematical achievements. Unlike many later Greek mathematicians, where at least we have some of the books which they wrote, we have nothing of Pythagoras’s writings. The society which he led, half religious and half scientific, followed a code of secrecy which certainly means that today Pythagoras is a mysterious figure.
He founded the Pythagorean brotherhood, a group of his followers whose beliefs and ideas were rediscovered during the Renaissance and contributed to the development of mathematics and Western rational philosophy.
Pythagoras was born in on the island of Samos, in the Aegean Sea. Pythagoras’s father was Mnesarchus and, while his mother was Pythais and she was a native of Samos. Mnesarchus was a merchant who came from Tyre, and there is a story that he brought corn to Samos at a time of famine and was granted citizenship of Samos as a mark of gratitude. As a child Pythagoras spent his early years in Samos but travelled widely with his father. There are accounts of Mnesarchus returning to Tyre with Pythagoras and that he was taught there by the Chaldaeans and the learned men of Syria. It seems that he also visited Italy with his father.
Little is known of Pythagoras’s childhood. All accounts of his physical appearance are likely to be fictitious except the description of a striking birthmark which Pythagoras had on his thigh. It is probable that he had two brothers although some sources say that he had three. Certainly he was well educated, learning to play the lyre, learning poetry and to recite Homer.
There were, among his teachers, three philosophers who were to influence Pythagoras while he was a young man. One of the most important was Pherekydes who many describe as the teacher of Pythagoras.

The beliefs that Pythagoras held were:

That at its deepest level, reality is mathematical in nature.
That philosophy can be used for spiritual purification.
That the soul can rise to union with the divine.
That certain symbols have a mystical significance.
That all brothers of the order should observe strict loyalty and secrecy.
The brotherhood of disciples soon gathered around him, inspired by his teachings. The group was strongly religious and devoted to reformation of political, moral, and social life.
Both men and women were permitted to become members of the Society, in fact several later women Pythagoreans became famous philosophers. The outer circle of the Society were known as the akousmatics and they lived in their own houses, only coming to the Society during the day. They were allowed their own possessions and were not required to be vegetarians.

Of Pythagoras’s actual work nothing is known. His school practised secrecy and communalism making it hard to distinguish between the work of Pythagoras and that of his followers. Certainly his school made outstanding contributions to mathematics, and it is possible to be fairly certain about some of Pythagoras’s mathematical contributions. First we should be clear in what sense Pythagoras and the mathematikoi were studying mathematics. They were not acting as a mathematics research group does in a modern university or other institution. There were no ‘open problems’ for them to solve, and they were not in any sense interested in trying to formulate or solve mathematical problems.
The order was influential in the region, but eventually its involvement in politics resulted in suppression of the brotherhood.
Among the basic tenets of the Pythagoreans are the beliefs that reality, at its deepest level, is mathematical in nature; that philosophy can be used for spiritual purification; that the soul can rise to union with the divine; and that certain symbols have a mystical significance.
This generalisation stemmed from Pythagoras’s observations in music, mathematics and astronomy. Pythagoras noticed that vibrating strings produce harmonious tones when the ratios of the lengths of the strings are whole numbers, and that these ratios could be extended to other instruments. In fact Pythagoras made remarkable contributions to the mathematical theory of music. He was a fine musician, playing the lyre, and he used music as a means to help those who were ill.
Pythagoras studied properties of numbers which would be familiar to mathematicians today, such as even and odd numbers, triangular numbers, perfect numbers etc. However to Pythagoras numbers had personalities which we hardly recognise as mathematics today.
“Each number had its own personality – masculine or feminine, perfect or incomplete, beautiful or ugly. This feeling modern mathematics has deliberately eliminated, but we still find overtones of it in fiction and poetry. Ten was the very best number: it contained in itself the first four integers – one, two, three, and four (1 + 2 + 3 + 4 = 10) – and these written in dot notation formed a perfect triangle.”
Today we particularly remember Pythagoras for his famous geometry theorem. Although the theorem, now known as Pythagoras’s theorem, was known to the Babylonians 1000 years earlier he may have been the first to prove it.
Heath gives a list of theorems attributed to Pythagoras, or rather more generally to the Pythagoreans.

(1) The sum of the angles of a triangle is equal to two right angles. Also the Pythagoreans knew the generalisation which states that a polygon with n sides has sum of interior angles 2n – 4 right angles and sum of exterior angles equal to four right angles.
(2) The theorem of Pythagoras – for a right angled triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides. We should note here that to Pythagoras the square on the hypotenuse would certainly not be thought of as a number multiplied by itself, but rather as a geometrical square constructed on the side. To say that the sum of two squares is equal to a third square meant that the two squares could be cut up and reassembled to form a square identical to the third square.
(3) Constructing figures of a given area and geometrical algebra. For example they solved equations such as a (a – x) = x2 by geometrical means.
(4) The discovery of irrationals. This is certainly attributed to the Pythagoreans but it does seem unlikely to have been due to Pythagoras himself. This went against Pythagoras’s philosophy the all things are numbers, since by a number he meant the ratio of two whole numbers. However, because of his belief that all things are numbers it would be a natural task to try to prove that the hypotenuse of an isosceles right angled triangle had a length corresponding to a number.
(5) The five regular solids. It is thought that Pythagoras himself knew how to construct the first three but it is unlikely that he would have known how to construct the other two.
(6) In astronomy Pythagoras taught that the Earth was a sphere at the centre of the Universe.

He also recognised that the orbit of the Moon was inclined to the equator of the Earth and he was one of the first to realise that Venus as an evening star was the same planet as Venus as a morning star.
Primarily, however, Pythagoras was a philosopher. In addition to his beliefs about numbers, geometry and astronomy described above, he belived that he dependence of the dynamics of world structure on the interaction of contraries, or pairs of opposites; the viewing of the soul as a self-moving number experiencing a form of metempsychosis, or successive reincarnation in different species until its eventual purification (particularly through the intellectual life of the ethically rigorous Pythagoreans); and the understanding – that all existing objects were fundamentally composed of form and not of material substance.
Further Pythagorean doctrine identified the brain as the locus of the soul; and prescribed certain secret cultic practices.
Pythagoras’s Society at Croton was not unaffected by political events despite his desire to stay out of politics. Pythagoras went to Delos in 513 BC to nurse his old teacher Pherekydes who was dying. He remained there for a few months until the death of his friend and teacher and then returned to Croton. In 510 BC Croton attacked and defeated its neighbour Sybaris and there is certainly some suggestions that Pythagoras became involved in the dispute.
Then in around 508 BC the Pythagorean Society at Croton was attacked by Cylon, a noble from Croton itself. Pythagoras escaped to Metapontium and the most authors say he died there, some claiming that he committed suicide because of the attack on his Society.
The evidence is unclear as to when and where the death of Pythagoras occurred. Certainly the Pythagorean Society expanded rapidly after 500 BC, became political in nature and also spilt into a number of factions.
Pythagoras is generally credited with the theory of the functional significance of numbers in the objective world and in music.
His followers are credited with the development of the Pythagorean theorem in geometry and the application of number relationships to music theory, acoustics, and astronomy.